Cosamp: Iterative Signal Recovery from Incomplete and Inaccurate Samples D. Needell and J. A. Tropp

نویسنده

  • D. NEEDELL
چکیده

Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimization-based approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log N), where N is the length of the signal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy signal recovery and uncertainty principles

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of t...

متن کامل

Signal Recovery from Inaccurate and Incomplete Measurements via Regularized Orthogonal Matching Pursuit

We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...

متن کامل

A Nearly-Linear Time Framework for Graph-Structured Sparsity

We start with a more detailed description of our experimental setup. All three images used in Section 6 (Figure 2) are grayscale images of dimension 100 × 100 pixels with sparsity around 4% to 6%. The background-subtracted image was also used for the experimental evaluation in (Huang et al., 2011). The angiogram image is a slightly sparsified version of the image on the Wikipedia page about ang...

متن کامل

Signal recovery from incomplete and inaccurate measurements via ROMP

We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...

متن کامل

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1-mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008